Using information theoretic distance measures for solving the permutation problem of blind source separation of speech signals
نویسندگان
چکیده
The problem of blind source separation (BSS) of convolved acoustic signals is of great interest for many classes of applications. Due to the convolutive mixing process, the source separation is performed in the frequency domain, using independent component analysis (ICA). However, frequency domain BSS involves several major problems that must be solved. One of these is the permutation problem. The permutation ambiguity of ICA needs to be resolved so that each separated signal contains the frequency components of only one source signal. This article presents a class of methods for solving the permutation problem based on information theoretic distance measures. The proposed algorithms have been tested on different real-room speech mixtures with different reverberation times in conjunction with different ICA algorithms.
منابع مشابه
Blind Separation of Jointly Stationary Correlated Sources
The separation of unobserved sources from mixed observed data is a fundamental signal processing problem. Most of the proposed techniques for solving this problem rely on independence or at least uncorrelation assumption for source signals. This paper introduces a technique for cases that source signals are correlated with each other. The method uses Wold decomposition principle for extracting ...
متن کاملAn Approach to Solving a Permutation Problem of Frequency Domain Independent Component Analysis for Blind Source Separation of Speech Signals
Independent component analysis (ICA) in the frequency domain is used for solving the problem of blind source separation (BSS). However, this method has some problems. For example, a general ICA algorithm cannot determine the permutation of signals which is important in the frequency domain ICA. In this paper, we propose an approach to the solution for a permutation problem. The idea is to effec...
متن کاملFrequency Domain Blind Source Separation for Many Speech Signals
This paper presents a method for solving the permutation problem of frequency domain blind source separation (BSS) when the number of source signals is large, and the potential source locations are omnidirectional. We propose a combination of small and large spacing sensor pairs with various axis directions in order to obtain proper geometric information for solving the permutation problem. Exp...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Audio, Speech and Music Processing
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012